

Previous chapter:

interference from waves thru 2 slits

⇒ wavelength $\lambda \sim$ same or bigger than
slit width so can treat waves in
slits as single Huygens wavelets

⇒ what if $\lambda \ll$ slit width?

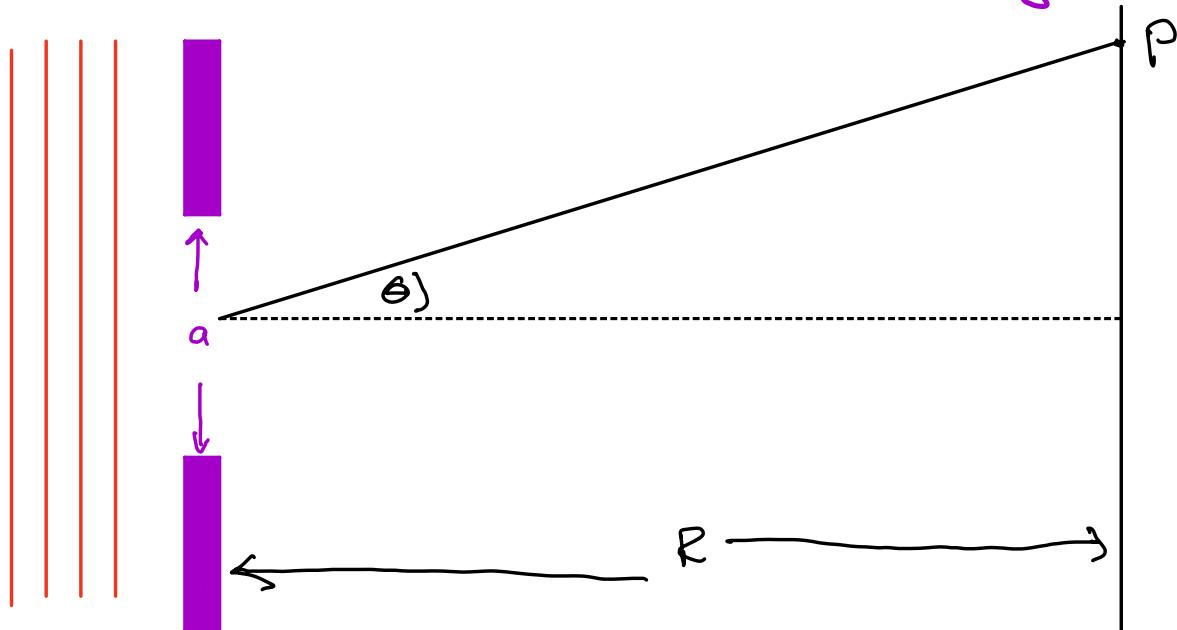
this is the case with light
(hard to make slit $\lambda \lambda \mu\text{m}!$)

Then apply Huygen's principle to all
the wavelets that fit inside slit

This is called diffraction

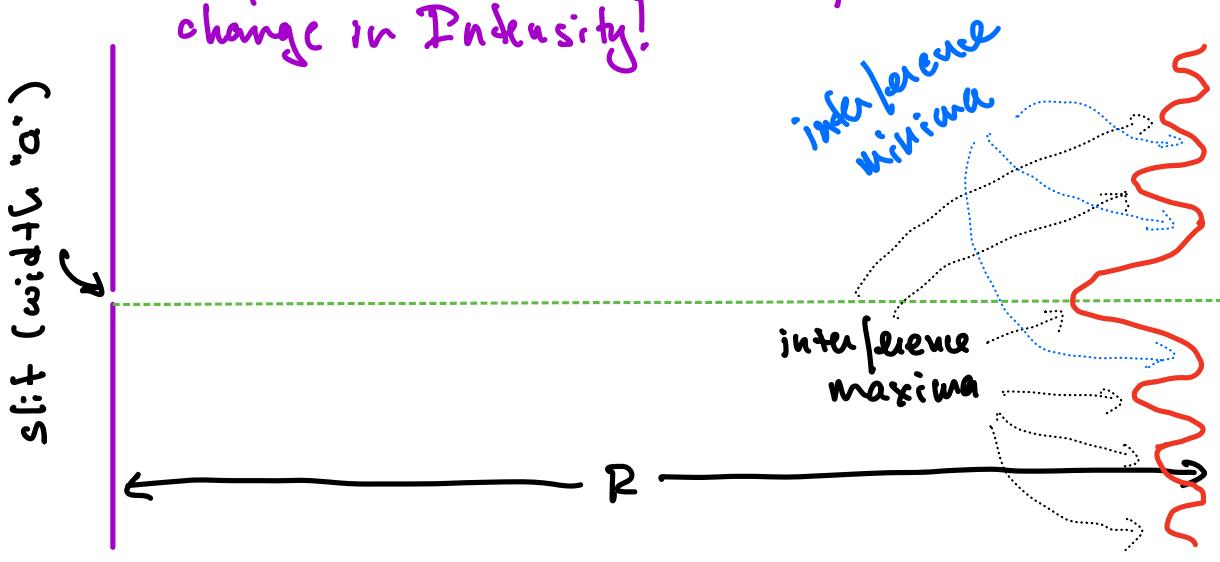
Fraunhofer diffraction:

when slit and screen are separated by $R > a$



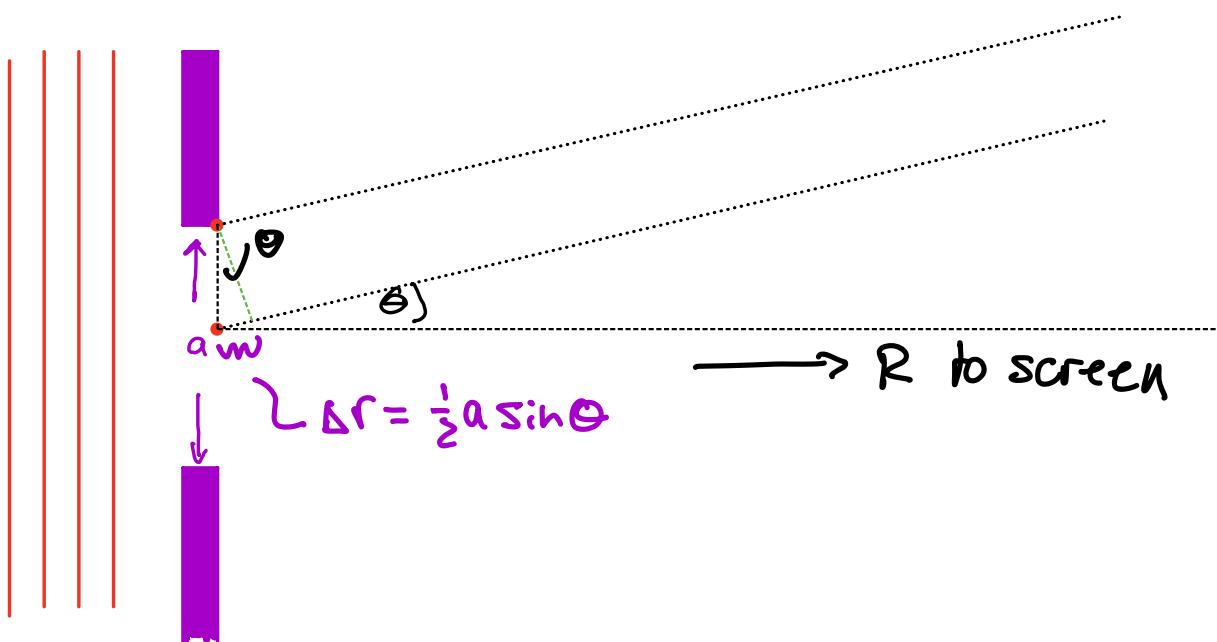
want to calculate the diffraction (interference) minima and maxima at point P

From experiment we see this pattern - not the change in Intensity!



Find 1st minima above central maxima:

1. Divide the slit into 2 parts
2. Draw a ray from top & middle to point on screen (a distance $R \gg a$ away) where 1st minima is
⇒ each pair of rays will be parallel (Same Θ)
3. path difference is $\frac{1}{2}a \cdot \sin\Theta$ just like for interference calculation



4. These 2 rays will cause destructive interference at the point on screen that is at Θ (with respect to horizontal) if path difference is $\Delta r = \frac{1}{2}\lambda$

$$\text{so } \frac{1}{2}a \sin\Theta = \frac{1}{2}\lambda$$

$$\text{or } a \sin\Theta = \lambda$$

so 1st minimum is at $\text{asin}\theta = \lambda$
 for this pair

- But also for the pair of rays just below this first pair
- and for all pairs
 so 1st minimum is at θ_1 where $\text{asin}\theta_1 = \lambda$

Next minimum is 1λ more of a path diff.

so θ_2 given by $\text{asin}\theta_2 = 2\lambda$

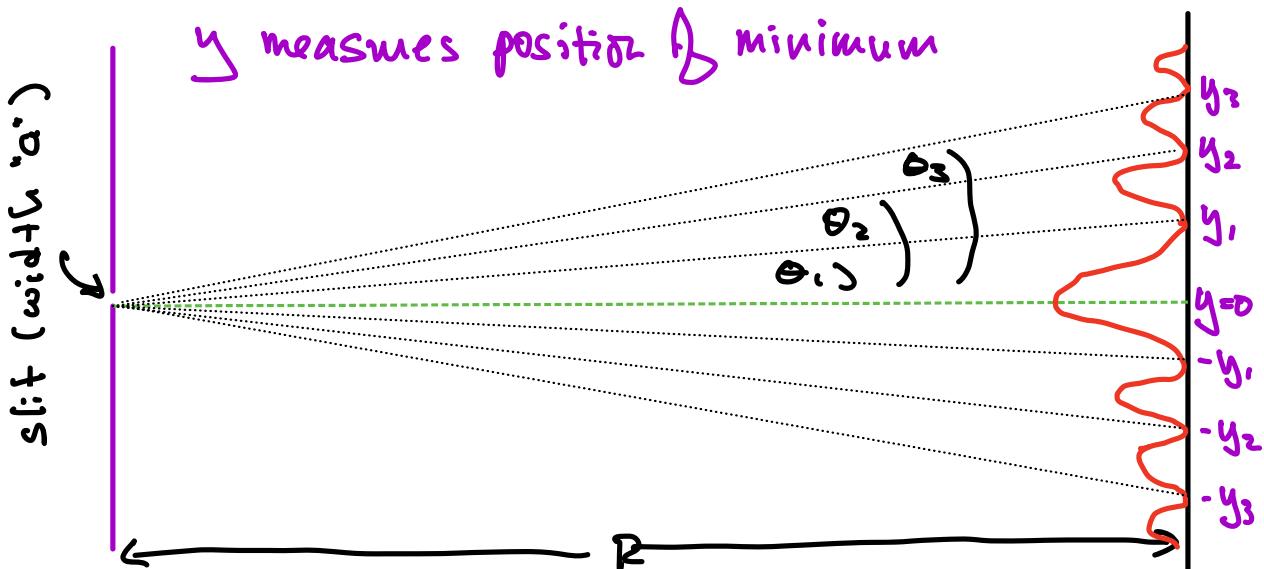
so in general : n^{th} minimum is given by

$$\boxed{\text{asin}\theta_n = n\lambda} \quad n = \pm 1, \pm 2, \pm 3, \dots$$

Why \pm ? because $n=+1$ is \pm min above central maximum

so $n=-1$ is \pm min below central max

y measures position of minimum



$$\tan \theta_n = \frac{y_n}{R}$$

for small angles, $\tan \theta = \frac{\sin \theta}{\cos \theta} \sim \sin \theta$ because $\cos \theta \rightarrow 1$ as $\theta \rightarrow 0$

$$\text{so } \sin \theta_n = \frac{y_n}{R}$$

$$\text{and } a \sin \theta_n = n \lambda$$

$$\text{so } a \frac{y_n}{R} = n \lambda \Rightarrow y_n = n \frac{\lambda R}{a}$$

At $n=0$, no path difference so that points to central maximum

$$\text{ex: let } \lambda = 400 \text{ nm}$$

$$a = 1 \text{ mm}$$

$$R = 1 \text{ m}$$

1. how many diffraction minima are there up to $\pm 1 \text{ cm}$ on screen?

• at $y = 1 \text{ cm}$, solve for n

$$10^{-2} \text{ m} = n \cdot \frac{400 \times 10^{-9} \text{ m} \cdot 1 \text{ m}}{10^{-3} \text{ m}}$$

$$n = \frac{10^{-2} \cdot 10^{-3}}{400 \times 10^{-9}} = \frac{10^{-4}}{400} = 2.5$$

so there are 25 min above and 25 below
total of 50

2. what is width of central max?

1st min above center of central max:

200 $\div 10$

$$y_1 = \frac{n\lambda R}{a} = \frac{1 \cdot 400 \times 10^{-9}}{10^{-3}}$$

$$= 400 \times 10^{-6} \text{ m} = 400 \mu\text{m}$$

1st min below is at $y = -400 \mu\text{m}$

so width of central max $W = 800 \mu\text{m}$

$$= 0.8 \text{ mm}$$

ex: light of wavelength 570nm on slit

Screen is $R = 7.5 \text{ m}$ away

width of central max is 3.2cm

how wide is slit?

1st minima is $\frac{3.2 \text{ cm}}{2} \rightarrow 1.6 \text{ cm}$ above center of central max

$$\text{since } \sim \tan \theta = \frac{1.6 \text{ cm}}{7.5 \text{ m}} = 0.00213 = \frac{n\lambda}{a} \quad n=1$$

$$\text{so } a = \frac{\lambda}{0.00213} = \frac{570 \times 10^{-9} \text{ m}}{2.13 \times 10^{-3}} = 0.27 \text{ mm}$$

Intensity pattern

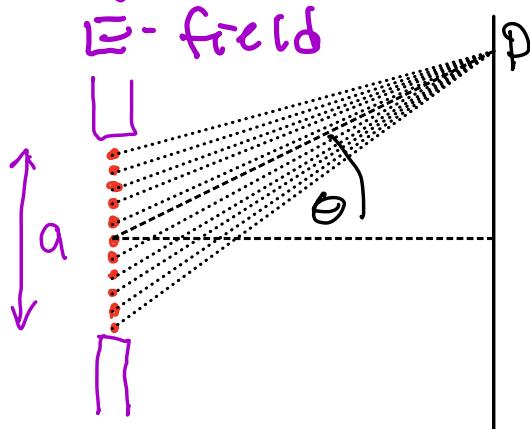
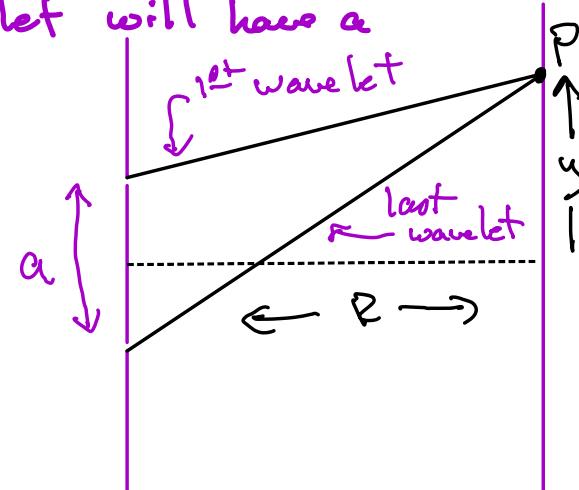
Each wavelet has an E field $\Rightarrow E_n$ $n = \text{wavelet}$

At point P , each wavelet will have a phase shift from having different path length

Add up all the waves as vectors

But assume $R \gg a$

\Rightarrow all waves are \sim parallel
so just need to add amplitudes \rightarrow get final



E_{TOT} at $P = \text{Sum } E \text{ at each wavelet}$
 \Rightarrow each E will have slightly different phase at point P due to the different path length

(Textbook derivation is pretty good - also see below)

result: $I = I_0 \frac{\sin^2(x)}{x^2}$ where $x = \frac{\pi a \sin \theta}{\lambda}$

where θ = angle between dashed horizontal line (from center of slit to screen) and wavelet ray from center of slit to P

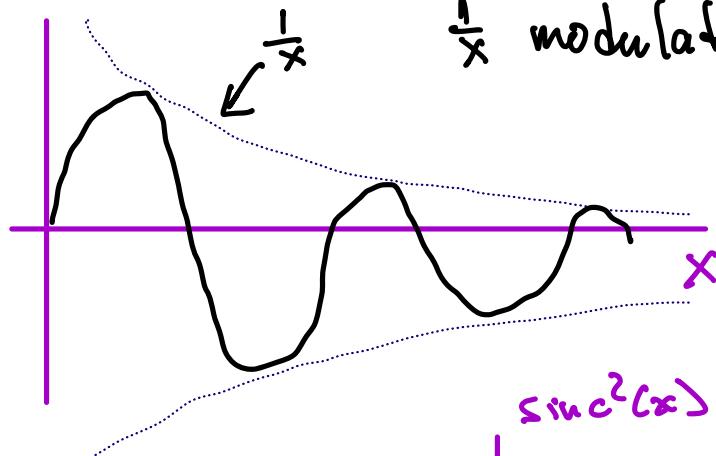
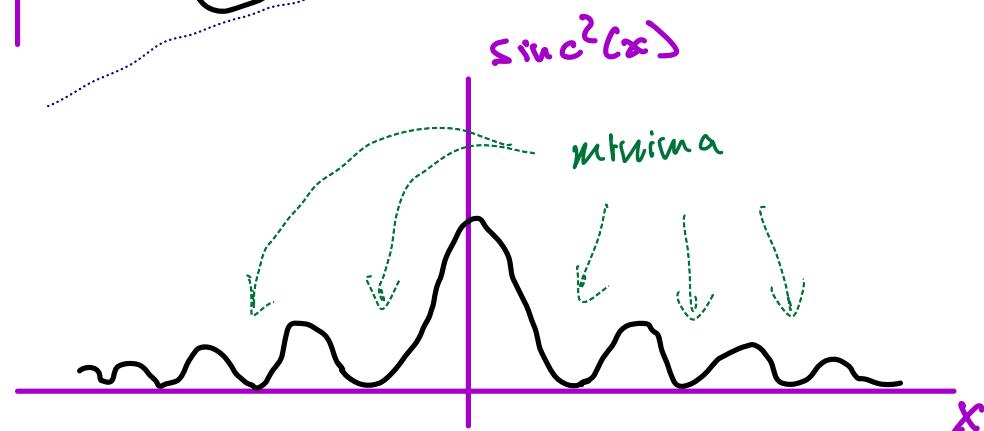
I_0 is intensity at central maximum: $\theta = 0$

note: $\frac{\sin(x)}{x} \equiv \text{"sinc function"}$

also $\frac{\sin(x)}{x}$ as $x \rightarrow 0 = 1$

$$\text{sinc}(x) = \frac{1}{x} \sin(x)$$

$\frac{1}{x}$ modulates amplitude of sine term



Intensity minima: of $\sin(x) = 0$

$$\text{so } x = \pi a \frac{\sin \theta}{\lambda} = m\pi$$

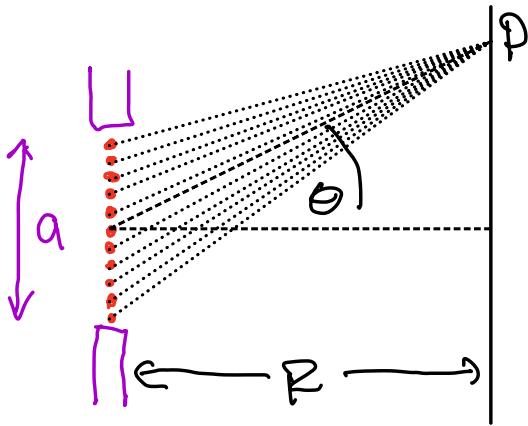
$$a \sin \theta = m\lambda \text{ as before}$$

Intensity pattern derivation

To do this right we would pick a point P and add up the interference from all wavelets

First calculate net electric field

\Rightarrow Each wavelet has an E-field that has this form: $E_i = E_0 \cos(kr - \omega t + \phi_i)$ where "i" labels the phase of the wavelet at point P .



$$E_T = \sum_i E_i \text{ sum over wavelets}$$

A #wavelets $\rightarrow \infty$, sum turns into an integral:

$$E_T = \frac{1}{a} \int_{-a/2}^{a/2} E_i dx$$

the integral goes from $-\frac{a}{2}$ to $\frac{a}{2}$ because we define the phase difference relative to the central wavelet

Let x be the distance above the center of the slit, and $-\frac{a}{2} \leq x \leq +\frac{a}{2}$

the phase difference between central wavelet

and any other wavelet at coordinate "x" is as usual: $\phi = k\Delta r$

where $\Delta r = \text{difference in distance from the 2 wavelets to point P}$

just as w/2-slit interference:

$$\begin{aligned}\Delta r &= x \sin \theta \\ \text{so } \phi_i &= k\Delta r_i = kx_i \sin \theta \\ &= 2\pi \frac{x_i \sin \theta}{\lambda}\end{aligned}$$

integral is:

$$E_{\text{TOT}} = \frac{1}{a} \int_{-a/2}^{a/2} E_0 \cos(kr - \omega t + \frac{2\pi \sin \theta}{\lambda} x) dx$$

- the $\frac{1}{a}$ is needed to cancel out the added position dimension from integrating over x
- or you could think of the integral as being over the fractional distance $d(\frac{x}{a})$

this integral is easy:

$$E_{\text{tot}} = \frac{1}{2} E_0 \sin \left(kr - wt + \frac{2\pi}{\lambda} \sin \theta x \right)$$

$\frac{2\pi \sin \theta}{\lambda}$ $\alpha/2$
 $\alpha/2$

$$= \frac{E_0 \lambda}{2\pi \alpha \sin \theta} \left[\sin \left(kr - wt + \frac{\pi \alpha}{\lambda} \sin \theta \right) - \sin \left(kr - wt - \frac{\pi \alpha}{\lambda} \sin \theta \right) \right]$$

$$\text{let } A = kr - wt, B = \frac{\pi \alpha}{\lambda} \sin \theta$$

$$\text{then } \sin(A+B) - \sin(A-B)$$

$$= \sin A \cos B + \cos A \sin B - (\sin A \cos B - \cos A \sin B)$$

$$= 2 \cos A \sin B$$

$$\text{so } E_{\text{tot}} = E_0 \cos(kr - wt) \frac{\sin \left(\frac{\pi \alpha}{\lambda} \sin \theta \right)}{\frac{\pi \alpha \sin \theta}{\lambda}}$$

$$\frac{\sin \left(\frac{\pi \alpha}{\lambda} \sin \theta \right)}{\frac{\pi \alpha \sin \theta}{\lambda}} = \text{sinc}(x) \Rightarrow \text{sinc}(x) = \frac{\sin(x)}{x}$$

$$\text{so } E_{\text{tot}} = E_0 \cos(kr - wt) \text{sinc} \left(\frac{\pi \alpha \sin \theta}{\lambda} \right)$$

then intensity

$$I = \epsilon_0 E_{\text{tot}}^2 C$$

$$= \epsilon_0 C I_0^2 \cos^2(kr - \omega t) \operatorname{sinc}^2\left(\frac{\pi a \sin \theta}{\lambda}\right)$$

$$I = I_0 \operatorname{sinc}^2\left(\frac{\pi a \sin \theta}{\lambda}\right)$$

1st min is when $\frac{\pi a \sin \theta}{\lambda} = \pi$ ($\sin(\pi) = 0$)
 or $a \sin \theta = \lambda$

2nd min is when $\frac{\pi a \sin \theta}{\lambda} = 2\pi$
 or $a \sin \theta = 2\lambda$

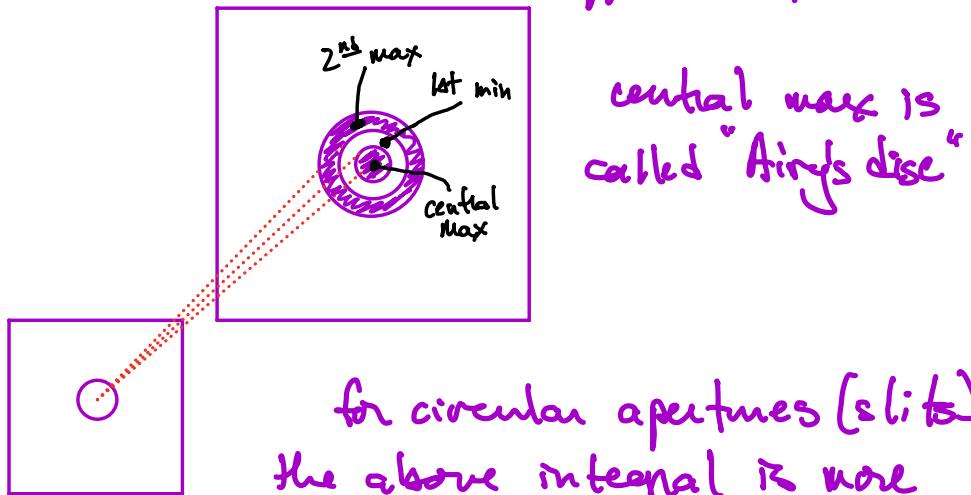
etc: $a \sin \theta = \pm m\lambda$ $m=1, 2, 3, \dots$ Minima

We don't look for maxima this way because
 the sinc function is the product of 2

functions: $\operatorname{sinc}(x) = \frac{1}{x} \cdot \sin(x)$

max of $\sin(x)$ is not necessarily max of sinc
 \Rightarrow but min sinc = min sin !

Circular slits also forms diffraction patterns



central max is
called "Airy's disc"

for circular apertures (slits)
the above integral is more
complicated

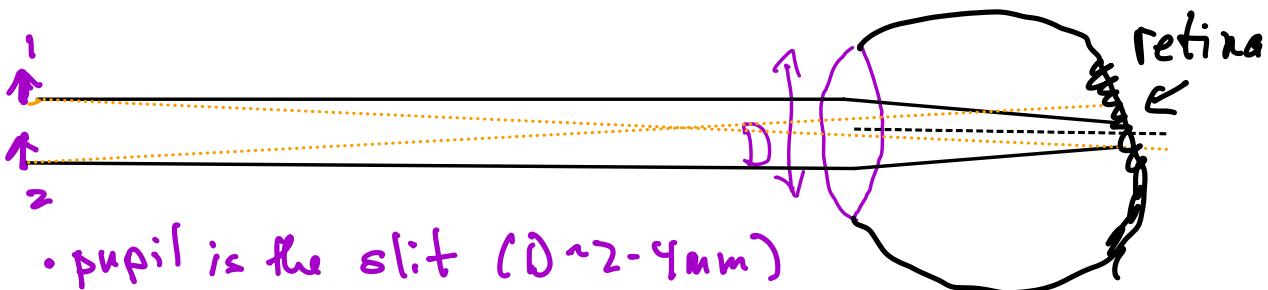
condition for 1st minima:

$$\frac{D \sin \theta}{\lambda} = 1.22 \lambda$$

↑ ↑ (1.22 comes from the
diameter angle between central & 2nd maxima
of aperture complicated integral)

⇒ so objects will not form crisp images on the
retina or film due to diffraction spreading
image out

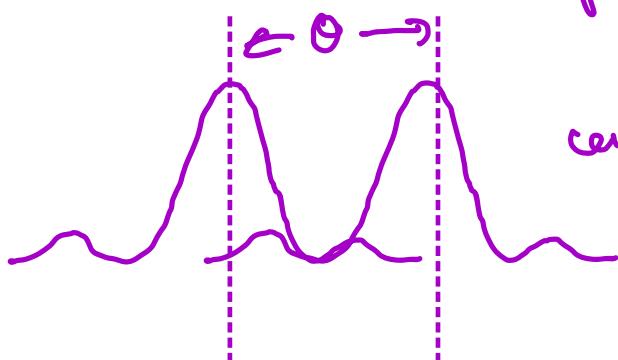
⇒ diffraction will then cause images from
2 objects that are close together to
overlap → want central maxima to be
far apart as possible so that central
maxima don't overlap (blurred together)



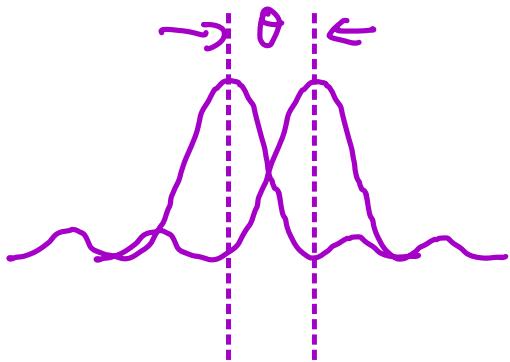
- pupil is the slit ($D \approx 2-4\text{mm}$)
- each object produces diffraction around image
- if objects are too close together, diffraction will blur them on retina so image will be blurry

\Rightarrow let θ be the angular separation between the images \rightarrow this is also the angular separation of the objects

if $\sin\theta < 1.22 \frac{\lambda}{D}$ then the image of one will fall in the Airy disc of the other
 \Rightarrow images are not resolvable!



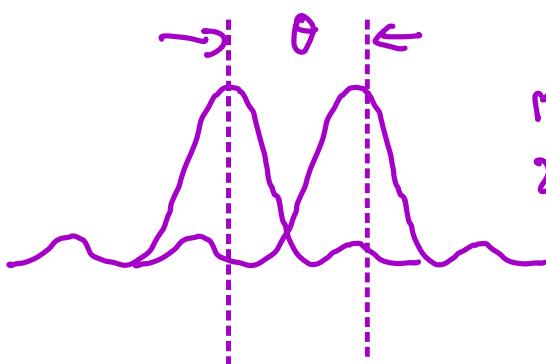
central max are far enough apart so you see the images clearly



central max's are close - max of 1 falls on min of the other - barely resolvable!

$$\text{here } \theta = \frac{1.22\lambda}{D}$$

2^{nd} image falls on 2^{nd} max of 2^{nd} image - not resolvable

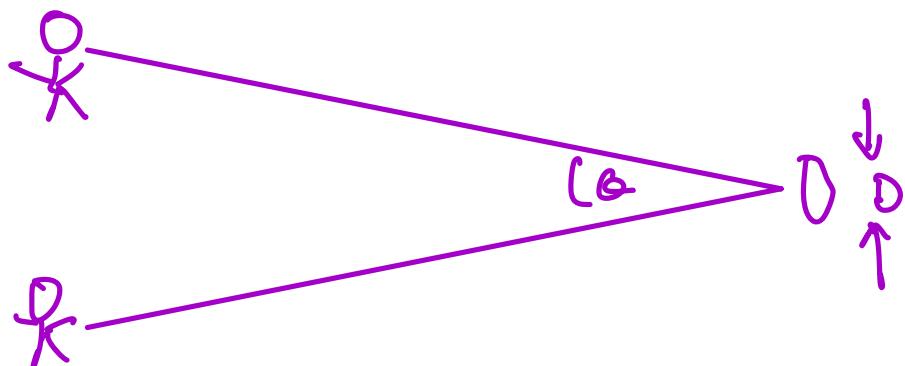


object angular separation is θ

if $\theta < \frac{1.22\lambda}{D}$ then the images are not resolvable

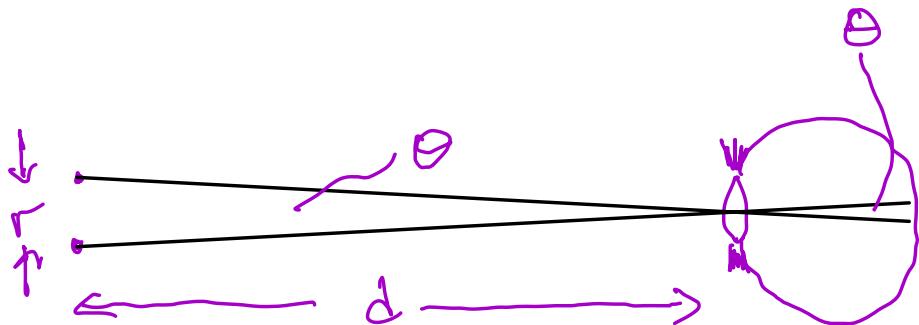
⇒ this is the diffraction limit for optical instruments

$$\theta_{\text{separation}} > \frac{1.22\lambda}{D} \text{ to be resolvable}$$



ex: eye pupil can be as small as 2mm

if light has $\lambda = 550\text{ nm}$, what is the minimum angle between 2 objects that you could see?



$$\Theta = 1.22 \frac{\lambda}{D} = \frac{1.22 \times 550 \times 10^{-9}}{2 \times 10^{-3}} = 3.36 \times 10^{-4}$$

if head lights of a car are $r=1.2\text{m}$ apart, what's the furthest dist the car can be for you to still resolve the 2 head lights (and not look like a single head light)?

$$\Theta = \frac{r}{d} = 3.36 \times 10^{-4}$$

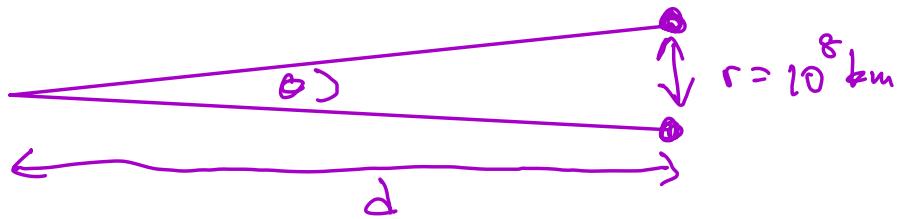
$$d = \frac{r}{3.36 \times 10^{-4}} = \frac{1.2\text{m}}{3.36 \times 10^{-4}} = 3577\text{m}$$

$\approx 3.6\text{km}$
 $\approx 2.2\text{miles}$

ex: eye pupil is $\sim 0.4\text{cm}$ diameter dilated.
 if 2 stars are 10^8 km apart (binary stars)
 then what's the furthest distance
 they can be and still viewable by
 the eye without being "diffraction limited"?

use $\lambda = 400\text{nm}$

$$\Theta = \frac{1.22\lambda}{D} = \frac{1.22 \times 400 \times 10^{-9}\text{m}}{0.4 \times 10^{-2}\text{m}} = 1.22 \times 10^{-4}$$



$$\Theta = \frac{r}{d} = 1.22 \times 10^{-4}$$

$$d = \frac{10^8 \text{ km}}{1.22 \times 10^{-4}} = 8.2 \times 10^{11} \text{ km} = 8.2 \times 10^{14} \text{ m}$$

note: speed of light $c = 3 \times 10^8 \text{ m/s}$

so the time to travel any dist $d = ct$

so the time for light to go $8.2 \times 10^{14} \text{ m}$:

$$t = \frac{d}{c} = \frac{8.2 \times 10^{14} \text{ m}}{3 \times 10^8 \text{ m/s}} = 2732 \text{ light-sec}$$

$$= 46.5 \text{ light-min}$$

The closest star is Proxima Centauri

$$d = 4.246 \text{ light-years}$$

⇒ what's the smallest separation at 4.246 light-years that you could see a binary star or not? using 400 nm light?

diffraction condition: $\Theta_{\text{sep}} > \Theta_{\text{diff}}$

$$\Theta_{\text{sep}} = \frac{r_{\text{sep}}}{d}$$



$$\Theta_{\text{sep}} = \frac{r_{\text{sep}}}{d} = \frac{1.22\lambda}{D} \quad D = 4 \text{ mm eye pupil}$$

$$\sin \Theta_{\text{diff}} \approx \Theta_{\text{diff}} = 1.22\lambda/D \text{ for small } \Theta$$

$$\text{so } \frac{1.22\lambda}{D} = \frac{r_{\text{sep}}}{d} \text{ solve for } r_{\text{sep}}$$

$$r_{\text{sep}} = \frac{1.22\lambda d}{D} = 4.246 \text{ ly} \times \frac{400 \times 10^{-9} \text{ m}}{4 \times 10^{-3} \text{ m}} \leftarrow \text{pupil } \approx 4 \text{ mm} = 4.246 \times 10^{-4} \text{ ly-yr}$$

$$1 \text{ light-year} = \text{dist light goes in 1 yr} = ct$$

$$\text{so } 1 \text{ ly} = 3 \times 10^8 \frac{\text{m}}{\text{s}} \times 1 \text{ yr} \times \frac{365 \text{ d}}{\text{yr}} \times \frac{24 \text{ hr}}{\text{d}} \times \frac{3600 \text{ s}}{\text{hr}} = 9.46 \times 10^{15} \text{ m}$$

$$r_{\text{sep}} = 4.246 \times 10^{-4} \text{ ly-yr} \times \frac{9.46 \times 10^{15} \text{ m}}{1 \text{ ly-yr}} = 4.0 \times 10^{12} \text{ m} = 4 \times 10^9 \text{ km}$$

Pluto orbit averages $\sim 6 \times 10^9 \text{ km}$

Diffraction - "bending" waves

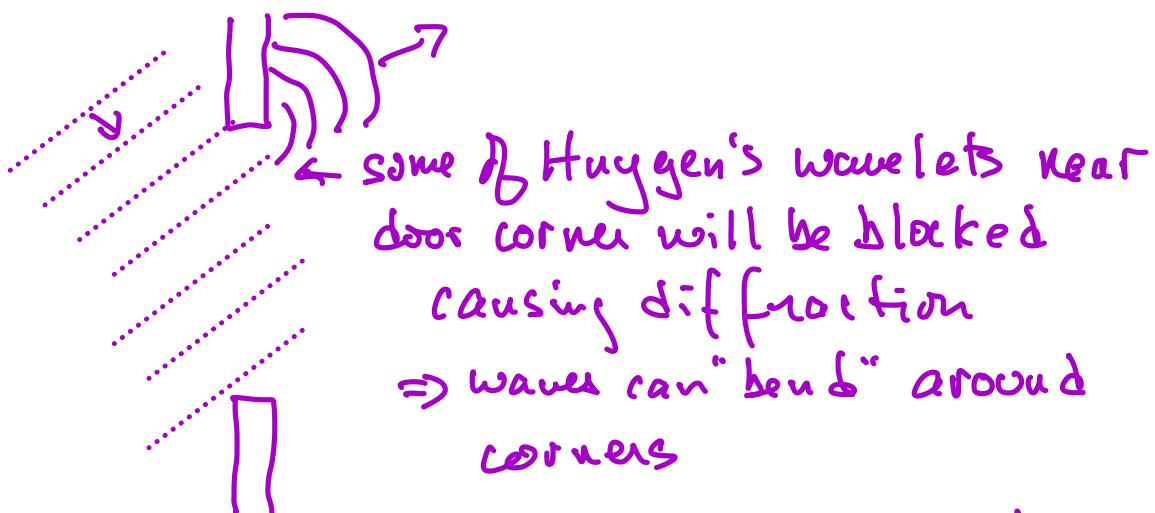
A shout, sound hits opening.

Note: $v_s = 343 \text{ m/s} = \lambda f$

let $f = 200 \text{ Hz}$

then $\lambda = \frac{v}{f} = \frac{343 \text{ m/s}}{200 \text{ s}} = 1.7 \text{ m} = 5.6 \text{ ft}$

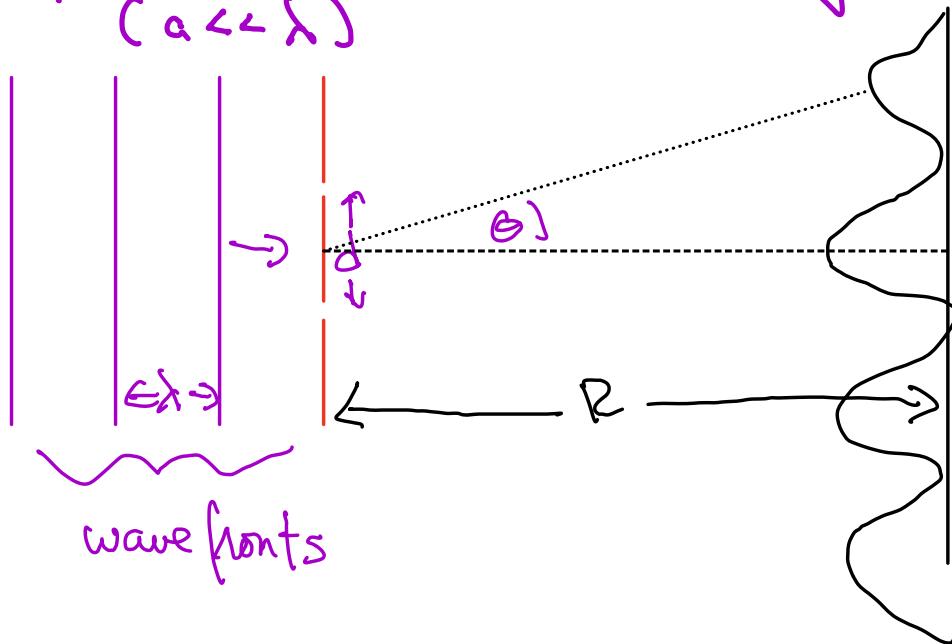
doorways are $\sim 4 \text{ ft}$ so $\lambda \sim a \Rightarrow$ diffraction waves will hit "slit" and deflect around the ends



Diffraction will always occur around edges!

2-slit Interference + Diffraction

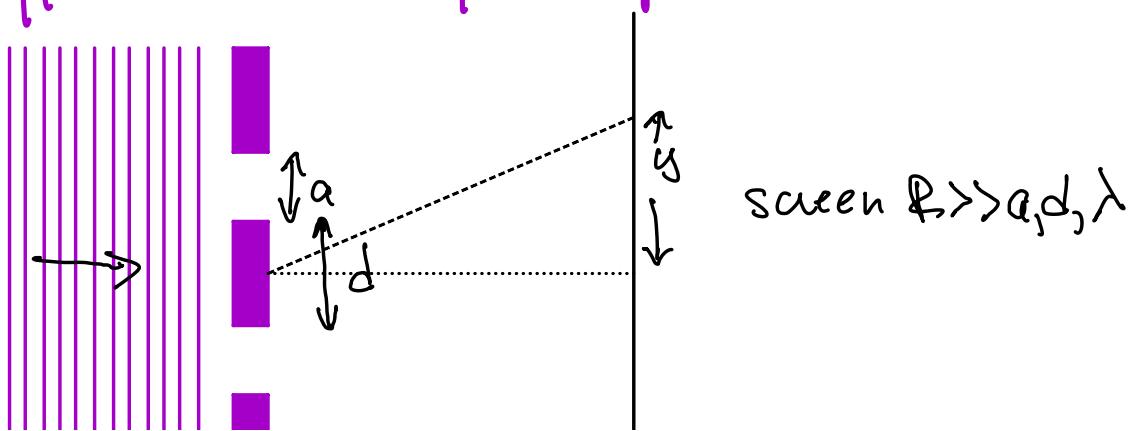
previous 2-slit interference ignored slit width
($a \ll \lambda$)



resulting interference pattern has
maxima when $d \sin \theta = n\lambda$

$$n = 0, \pm 1, \pm 2, \dots$$

If we use light, $\lambda \sim 550\text{nm}$, slits are
usually with $a \gg \lambda$ so have to include
diffraction in interference pattern



2-slit interference: $d \sin \theta = n\lambda$ maximum
 $= (n + \frac{1}{2})\lambda$ minima $\left\{ \begin{array}{l} n=0, \pm 1, \pm 2, \dots \end{array} \right.$

diffraction: $a \sin \theta = m\lambda$ minima $m = \pm 1, \pm 2$

for $\sin \theta \sim$ small, $\tan \theta \sim \sin \theta \sim \theta$ and $\tan \theta = \frac{y}{R}$

2-slit Interference & Diffraction both happen
 \Rightarrow things are linear!

so position y for interference min:

$$d \frac{y_n}{R} = (n + \frac{1}{2})\lambda$$

$$\text{or } y_n = \frac{R\lambda}{d} \left(n + \frac{1}{2} \right)$$

distance between interference minima:

$$\boxed{\Delta y_i = y_{n+1} - y_n = \frac{R\lambda}{d}}$$

position for diffraction minima:

$$\frac{a y_m}{R} = m\lambda$$

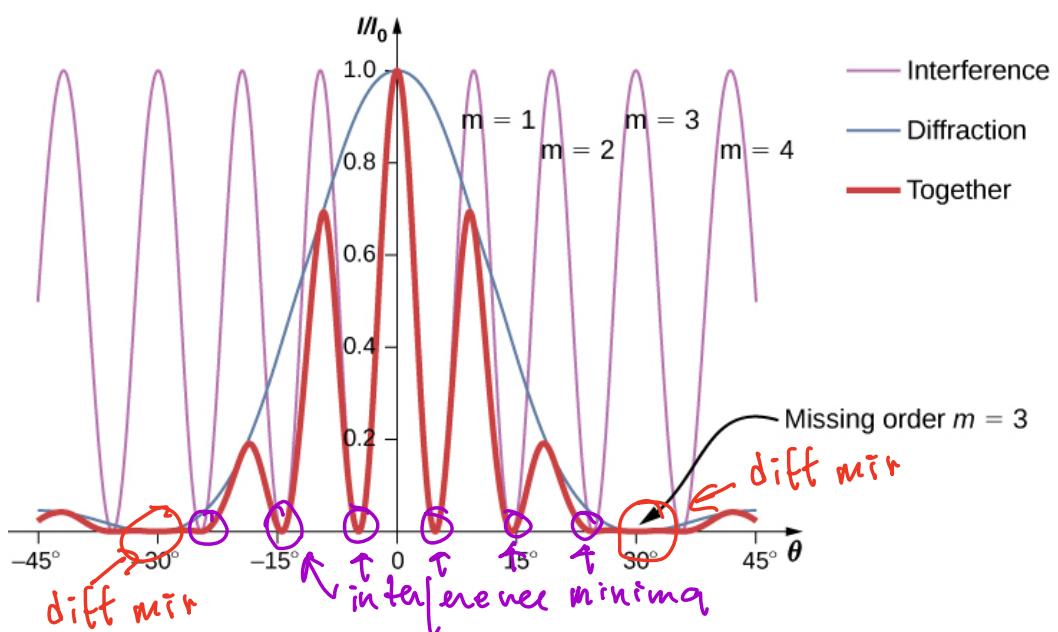
$$\text{or } y_m = \frac{R\lambda}{a} m$$

dist between diffraction minima:

$$\Delta y_d = y_{m+1} - y_m = \frac{R\lambda}{a}$$

usually $a < d$ so $\Delta y_d > \Delta y_i$

so there will be many interference minima inside diffraction minima



Intensity pattern for 2 slit:

$$I = I_0 \cos^2(\phi/2) \quad \text{where } \phi = \text{phase diff between waves from top & bottom slit}$$

200 3/14

$$\phi = kAr = k \times d \sin\theta$$

$$= \frac{2\pi d \sin\theta}{\lambda}$$

Intensity for diffraction of single slit:

$$I = I_0 \operatorname{sinc}^2\left(\frac{\pi a \sin \theta}{\lambda}\right)$$

overall intensity: diffraction modulates interference

$$I = I_0 \cos^2\left(\frac{\pi d \sin \theta}{\lambda}\right) \operatorname{sinc}^2\left(\frac{\pi a \sin \theta}{\lambda}\right)$$

interference
maxima

diffraction
minima

ex: $a = 1 \text{ mm}$, $d = 3 \text{ mm}$

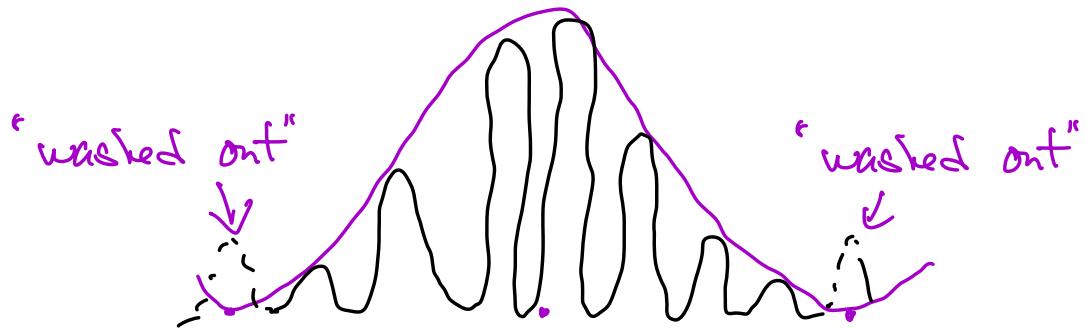
interference max is a pts $y_n = n \frac{\lambda R}{d}$

diffraction min " $y_m = m \frac{\lambda R}{a}$

since $d = 3a$ can write $y_m = n \frac{\lambda R}{3a}$

so int max coincides w/ diff min when
 $m = n/3$

this means 3rd interference maxima is washed out by 1st diffraction minima

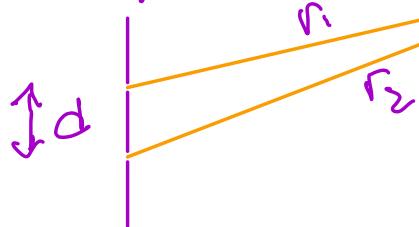


⇒ in general, if interference maxima between diffraction minima will be

$$\begin{aligned}
 N &= \frac{d}{a} + \frac{d}{a} - 1 = \frac{2d}{a} - 1 \\
 &\quad \text{+Side} \quad \text{-Side} \quad \text{central} \\
 &= 2 \frac{d}{a} - 1 \quad \text{max} \\
 &= \frac{2d - a}{d} \quad \text{Count once}
 \end{aligned}$$

Multiple slits

start w/ 2 slits

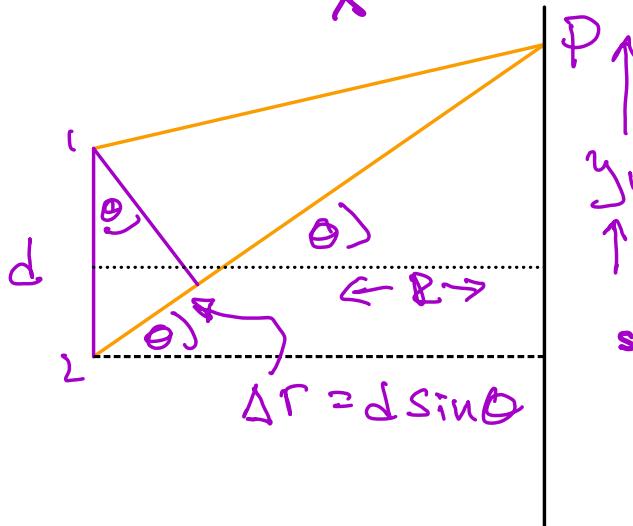


interference is constructive at P
if $k\Delta r = 2\pi \cdot n$
 $n = 0, \pm 1, \pm 2, \dots$

for $n=1$, then $k\Delta r = 2\pi$ $k = \frac{2\pi}{\lambda}$

and $\Delta r = d \sin \theta$

$$k\Delta r = \frac{2\pi d \sin \theta}{\lambda} = 2\pi \Rightarrow d \sin \theta = \lambda$$



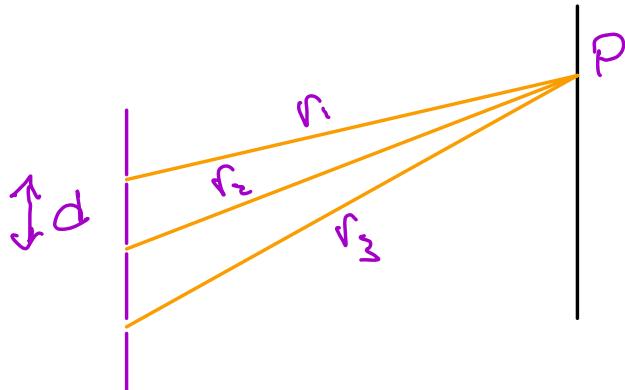
$$\tan \theta = \frac{y_1}{R}$$

and $\tan \theta \approx \sin \theta$
so $\sin \theta = \frac{\lambda}{d} = \frac{y_1}{R}$

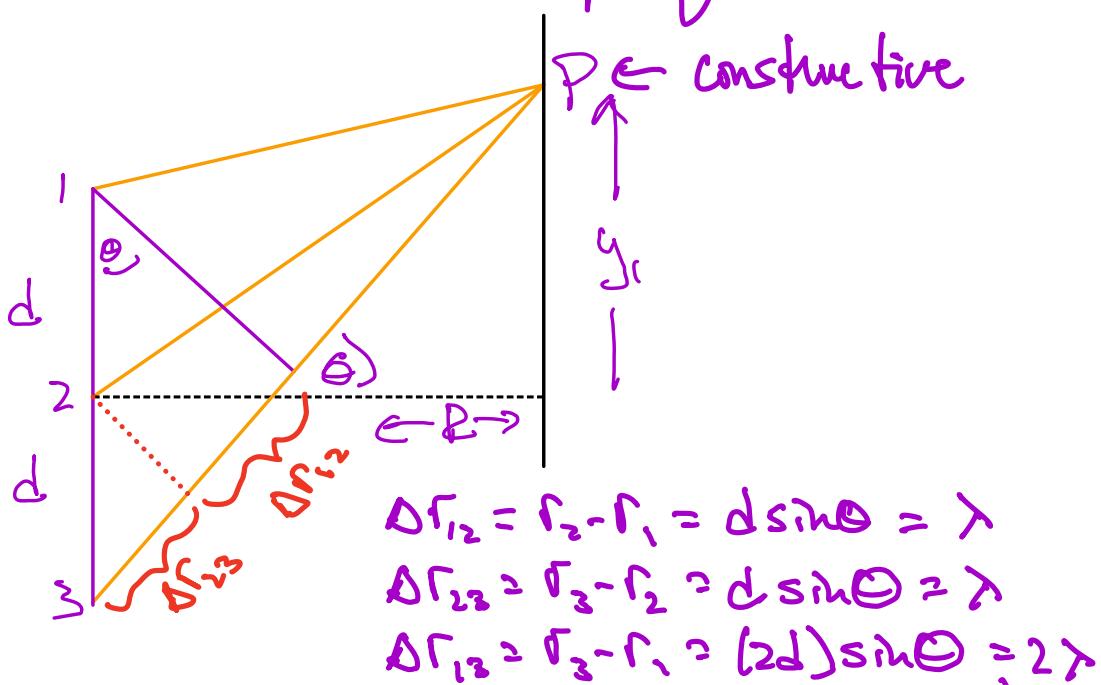
$$y_1 = \frac{\lambda R}{d}$$

y_1 = height above line
symmetric between
wave 1 & 2

now add another slit w/same spacing



this wave will also add constructively at P because the path diff to the other 2 waves will also be a multiple of λ



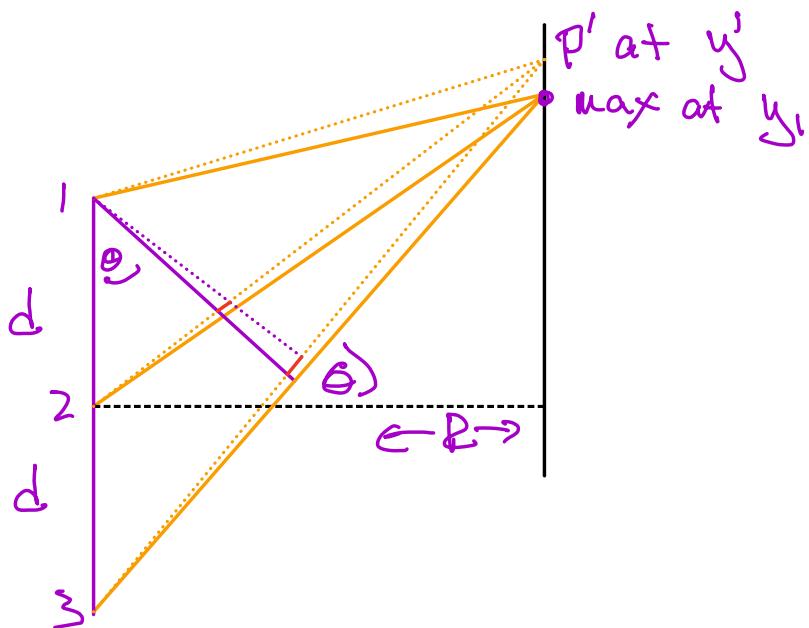
this is in the limit $R \gg d$ (R =dist to screen)
so that all rays make an angle θ to the horizontal dashed line

\Rightarrow each path diff has to be $DS = \lambda$ for constructive interference for all waves with each other!

Next add more slits. Each slit will add constructively at point P with other sources (at the other slits)

This will produce a very bright max at point P

Now move point P slightly up from the max and add more slits:



Dashed lines are point P' , at $y' > y_1$

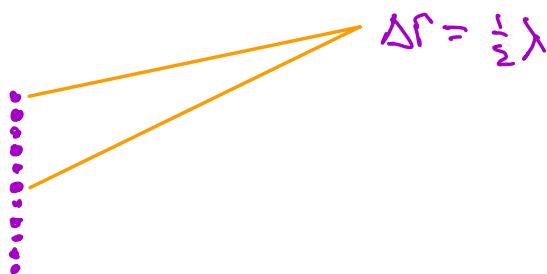
1st 2 waves have path diff Δr_{12} that is slightly bigger than before (red line)

2nd pair has a path difference Δr_{23} that is even bigger than Δr_1

$$\Delta r_{23} > \Delta r_1$$

each additional slit will have an even bigger path difference

for large enough number of slits, at some point the extra path difference will start to be $\frac{1}{2}\lambda$ from the 1st and will cancel each other out

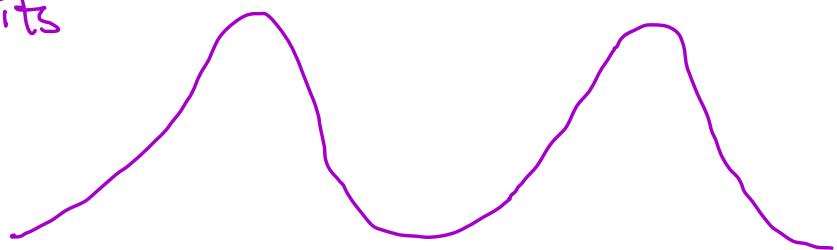


so right next to 1st max we will fall quickly to zero amplitude due to all the cancellations

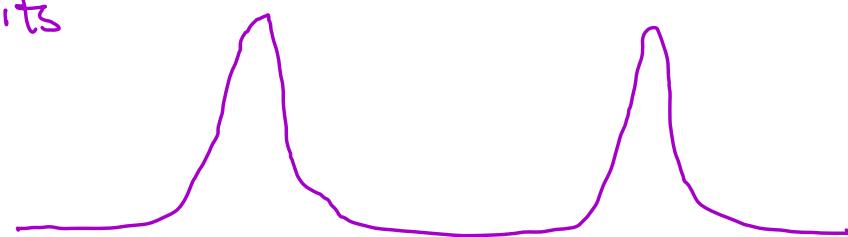
⇒ for n w/ dist d between you will still see max when $d \sin \theta_n = n\lambda$

but as $m \rightarrow \infty$ the amplitude falls off
more quickly

2 slits

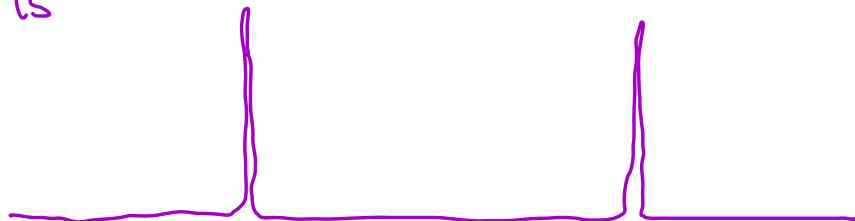


3 slits



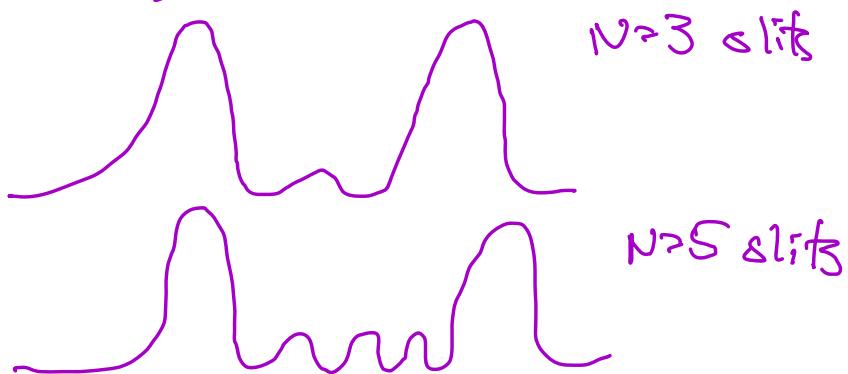
10 slits

100 slits



Actually there is some structure between these maxima but it is much reduced
⇒ there are $N-1$ minima in between maxima

for N slits

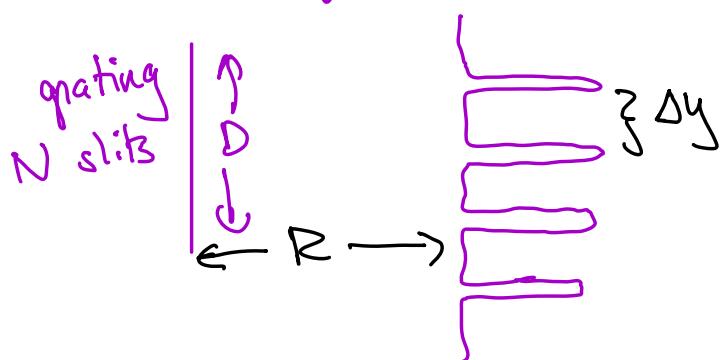


but the slits all have to have the same separation!

Diffraction grating

This is used for very many slits (1000s)

The interference maxima are very peaked!



N slits per length D \therefore spacing $d = \frac{D}{N}$

interference max are when $d \sin \theta = n\lambda$

and $\tan \theta \approx \sin \theta = \frac{y_n}{R}$

$$\text{so } \frac{dy_n}{R} = n\lambda$$

$$\text{so } y_n = n \frac{\lambda R}{d}$$

then distance between maxima on the screen $\Delta y = y_{n+1} - y_n = \frac{\lambda R}{d}$

so if we measure $\Delta y, d, R$ carefully

then $\lambda = \frac{d \cdot \Delta y}{R}$ tells you the

wave length of light

\Rightarrow Diffraction gratings can be used to measure wave lengths of light to high accuracy

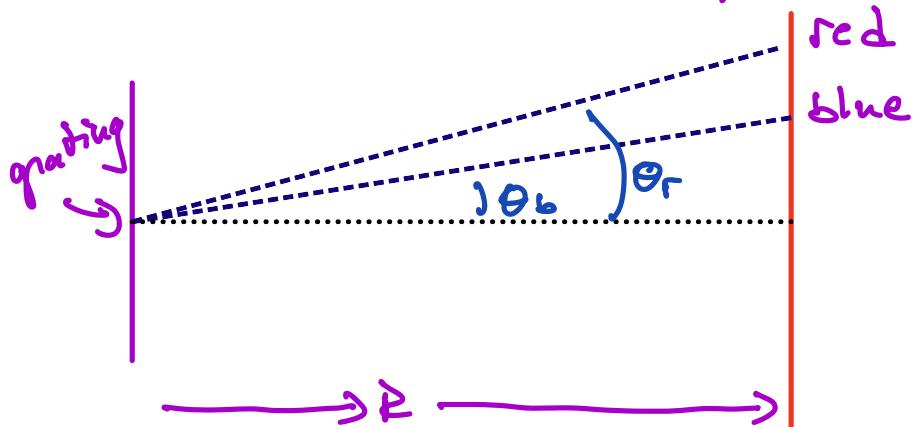
These can be made by etching lines on glass to be the slits.

ex: diffraction grating w/ 10,000 lines/cm

⇒ send beam of white light, screen $R = 2\text{m}$

Find angles for 380 nm (blue) and 760 nm (red)

note: all wavelengths have same conditions for constructive interference



condition for constructive: $d \sin \theta = \lambda$

⇒ this is 1st max beyond central

note: all λ 's interfere constructively at central max

$$\text{so } d = \frac{1\text{ cm}}{10,000} = 10^{-6}\text{ m}$$

$$d \sin \theta_r = \lambda_r = 760\text{ nm}$$

$$\sin \theta_r = \frac{760 \times 10^{-9}}{10^{-6}} = 0.76$$

$$\theta_f = \sin^{-1} 0.76 = 50^\circ$$

$$\sin \theta_b = \lambda_b = 360$$

$$\text{so } \sin \theta_f = 0.38$$

$$\theta_f = 22^\circ$$

200 3/24

400 3/24